Directing Function
Inlining with Post-Inlining
Benefits

Erick Ochoa Andrew Craik Karim Ali J. Nelson Amaral
eochoa@ualberta.ca ajcraik@ca.ibm.com karimQualberta.ca jamaral@Qualberta.ca

mailto:eochoa@ualberta.ca
mailto:karim@ualberta.ca
mailto:jamaral@ualberta.ca
mailto:ajcraik@ibm.ca

Function Inlining

System.out.println("Hello, " + person.getName()) ;

Function Inlining

person.getName ()

Function Inlining

person.getName ()

* 23: aload 1

24: invokevirtual #9 // Person.getName: () Ljava/lang/String

Function Inlining

person.getName ()

23: aload 1
24: invokevirtual #9 // Person.getName: () Ljava/lang/String

>

Function Inlining

person.getName ()

23: aload 1
24: invokevirtual #9 // Person.getName: () Ljava/lang/String

public java.lang.String getName () ;

Code:
* 0: aload 0
l: getfield

4: areturn

Function Inlining

person.getName ()

23: aload 1
24: invokevirtual #9 // Person.getName: () Ljava/lang/String

public java.lang.String getName () ;
Code:

0: aload 0
* 1: getfield
4: areturn

Function Inlining

person.getName ()

23: aload 1
24: invokevirtual #9 // Person.getName: () Ljava/lang/String

public java.lang.String getName () ;
Code:

0: aload 0

l: getfield
4: areturn

Function Inlining

person.getName ()

23: aload 1
24: invokevirtual #9

public java.lang.String getName () ;
Code:
0: aload O
1l: getfield
4: areturn

Function Inlining

person.name

23: aload 1
24: invokevirtual #9

public java.lang.String getName () ;
Code:
0: aload O
1l: getfield
4: areturn

10

Function Inlining

person.name

23: aload 1
24: invokevirtual #9

23: aload 1
2 4 . ge tfleld public java.lang.String getName () ;

Code:
0: aload O
1l: getfield
4: areturn

-

11

Function Inlining

person.name

23: aload 1
24: invokevirtual #9

23: aload 1
* 24 . getfleld public java.lang.String getName () ;
Code:

0: aload O
1l: getfield
4: areturn

12

Benefits vs Costs

23: aload 1
24: invokevirtual #9

public java.lang.String getName () ;
Code:
0: aload 0
1: getfield
4: areturn

23: aload 1
24: getfield

Minimizes
call instructions

13

Benefits vs Costs

23: aload 1

24: getfield
23: aload 1

24: getfield
23: aload 1
24: getfield

23: aload 1
24: invokevirtual #9

public java.lang.String getName (
Code:

0: aload O

1: getfield

4: areturn

Minimizes
call instructions
May increase
Code size

14

Greedy Inlining Strategy

- Focuses on direct benefits of inlining

23: aload 1
24: invokevirtual #9

public java.lang.String
getName () ;
Code:
0: aload 0
1: getfield
4: a return

23: aload_ 1
24: getfield

15

Greedy Inlining Strategy

* Focuses on direct benefits of inlining
* Inlines smallest methods first

23: aload 1
24: invokevirtual #9

public java.lang.String
getName () ;
Code:
0: aload 0
1: getfield
4: a return

23: aload_ 1
24: getfield

16

Greedy Inlining Strategy

* Focuses on direct benefits of inlining
* Inlines smallest methods first

23: aload 1
24: invokevirtual #9

public java.lang.String
getName () ;
Code:
0: aload 0
1: getfield
4: a return

23: aload_ 1
24: getfield

Is inlining solved?

17

Greedy Inlining Strategy

* Focuses on direct benefits of inlining
* Inlines smallest methods first

23: aload 1
24: invokevirtual #9

public java.lang.String
getName () ;
Code:
0: aload 0
1: getfield
4: a return

23: aload_ 1
24: getfield

Is inlining solved?
No!

18

Example

Takeaway: small methods wrap
around the computational

expenSIVe methOd public int startsWithAReturnsLength (String example) {

boolean starts = example.startsWith("A");
. }
startsWithAReturnLength

return starts.length();

19

Example

Takeaway: small methods wrap
around the computational
expensive method

@WithARetumL@

public boolean startsWith(String prefix) ({
return startsWith (prefix, 0);

}

public int length() ({
return this.length;

}

Example

Takeaway: small methods wrap
around the computational
expensive method

@WithARetumL@
@ @ public boolean startsWith(String prefix, int start) {
return regionMatches (start, prefix, 0, prefix.count);
}

21

Example

Takeaway: small methods wrap
around the computational
expensive method

@WithARetumL@

public boolean regionMatches (int thisStart,
String string,
int start,
int length) { /* ... */}

regionMatches

22

Greedy Inliner

Budget = 40
startsW1thARetumLength

i%

reglonMatches

Remaining = 40

23

Greedy Inliner

Budget = 40
startsW1thARetumLength

i%

reglonMatches

Remaining = 36

24

Greedy Inliner

Budget = 40
startsW1thARetumLength

" Cnswin >
20 @omat@

25

Remaining = 30

Greedy Inliner

Budget = 40
startsW1thAReturnLength

S e

11
20 @omat@

20

Remaining = 19

Greedy Inliner

Budget = 40
startsW1thARetumLength

S e

11
20 X@onMat@

27

Remaining = 19

Problem?

Greedy inliner »

Minimizes
call instruction
overhead

28

Minimizes
call instruction
overhead

Greedy inliner

23: aload 1
24: invokevirtual #9

public java.lang.String
getName () ;
Code:
0: aload O

Problem?

What we want *

29

23: aload_ 1
24: getfield

Minimizes
execution
time

Benefits vs Costs

Benefit

e Avoids call instruction overhead

Benefits vs Costs

Benefit

e Avoids call instruction overhead

e Improves dataflow analyses by
providing additional context

31

Benefits vs Costs

Benefit

e Avoids call instruction overhead

e Improves dataflow analyses by
providing additional context

e Other compiler transformations
benefit from additional context

32

Benefits vs Costs

Benefit

e Avoids call instruction overhead

e Improves dataflow analyses by
providing additional context

e Other compiler transformations
benefit from additional context

e |nlined method specializes to its
calling context

33

Benefits vs Costs

Benefit Costs

e Avoids call instruction overhead

e Improves dataflow analyses by
providing additional context

e Other compiler transformations
benefit from additional context

e |nlined method specializes to its
calling context

34

Benefits vs Costs

Benefit Costs
e Avoids call instruction overhead ¢ Code growth

e Improves dataflow analyses by
providing additional context

e Other compiler transformations
benefit from additional context

e Inlined method specializes to its
calling context

35

Benefits

Benefit

Avoids call instruction overhead

Improves dataflow analyses by
providing additional context

Other compiler transformations
benefit from additional context

Inlined method specializes to its
calling context

36

vs Costs

Costs

e Code growth

e Potential negative cache effects

Benefits vs Costs

Benefit Costs

e Avoids call instruction overnead ¢ Code growth

e Improves dataflow analyses by e Potential negative cache effects
providing additional context
e |ncrease compile time and
e Other compiler transformations analysis time
benefit from additional context

e |nlined method specializes to its
calling context

37

Problem?

Greedy inliner »

Minimizes
call instruction
overhead

38

Benefits

e Avoids call instruction overhead

39

Benefits

Avoids call instruction overhead

Improves dataflow analyses by
providing additional context

Other compiler transformations
benefit from additional context

Inlined method specializes to its
calling context

40

1994

Towards Better Inlining Decisions Using Inlining Trials

Jeffrey Dean and Craig Chambers

Department of Computer Science and Engineering
University of Washington

Abstract

Inlining trials are a general mechanism for making better automatic
decisions about whether a routine is profitable to inline. Unlike
standard source-level inlining heuristics, an inlining trial captures the
effects of optimizations applied to the body of the inlined routine
when calculating the costs and benefits of inlining. The results of
inlining trials are stored in a persistent database to be reused when
making future inlining decisions at similar call sites. Type group
analysis can determine the amount of available static information
exploited during compilation, and the results of analyzing the
compilation of an inlined routine help decide when a future call site
would lead to substantially the same generated code as a given
inlining trial. We have implemented inlining trials and type group
analysis in an optimizing compiler for SELF, and by making wiser
inlining decisions we were able to cut compilation time and compiled
code space with virtually no loss of execution speed. We believe that
inlining trials and type group analysis could be applied effectively to
many high-level languages where procedural or functional
abstraction is used heavily.

1 Introduction

Inlining is an important implementation technique for reducing the
performance costs of language abstraction mechanisms. Inlining
(also known as procedure integration and unfolding) not only confers
the direct benefits of eliminating the procedure call and return
sequences but also facilitates optimizing the body of the called
routine in the context of the call site; sometimes these indirect post-
inlining benefits dwarf the direct benefits. Inlining has long been
applied to languages like C and Fortran, but it may be even more
beneficial in the context of higher-level languages. Functional
languages such as Scheme and ML [Rees & Clinger 86, Milner et al.
90], pure object-oriented languages such as Smalltalk and Eiffel
[Goldberg & Robson 83, Meyer 92], and reflective systems such as
CLOS and SchemeXerox [Bobrow et al. 88, Adams et al. 93]
encourage programmers to write general, reusable routines and solve
problems by composing existing functionality, leading to programs
with very high call frequencies. Compilers and partial evaluators,
such as Similix and Schism [Bondorf 91, Consel 90], can exploit
inlining to reduce the cost of these abstraction mechanisms and
thereby foster better programming styles.

Inlining is possible only when the compiler can determine statically
the single target routine invoked by a call; in functional and object-
oriented languages, this determination can require sophisticated
analysis [Shivers 88, Hall & Kennedy 92, Chambers & Ungar 90,
Palsberg & Schwartzbach 91]. But even if the call site is potentially
inlinable, inlining may not be profitable. Care must be taken not to
inline too much, or compilation time and compiled code could swell

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

LISP 94 - 6/94 Orlando, Florida USA
© 1994 ACM 0-89791-643-3/94/0006..$3.50

prohibitively. Inlining should only be applied where the benefits
obtained by inlining outweigh the costs.

In many systems, the profitability of inlining a particular routine is
hard-wired into the compiler. For example, the Smalltalk-80
compiler hard-wires the definition and optimized implementation of
several basic functions from its standard library, and the Haskell
standard prelude is fixed so that compilers can implement the
functions in the standard library more efficiently [Hudak et al. 90]. A
drawback of the hard-wiring approach is that built-in routines usually
run much faster than user-defined routines, discouraging
programmers from defining and using their own abstractions. Other
systems, including C++, Modula-3, T Scheme, SchemeXerox,
Common Lisp, Similix, and Schism {Stroustrup 91, Nelson 91, Slade
87, Adams et al. 93, Steele 90], allow programmers to indicate
explicitly which routines are profitable to inline. While granting
programmers fine control over the compilation process, this approach
requires programmers to have a fair understanding of the language's
implementation issues (an assumption becoming less likely as
implementations become more sophisticated) and can be tedious if
inlining must be applied heavily to get good performance.
Additionally, most explicit declaration-based mechanisms do not
allow programmers to specify that inlining is profitable only in
certain contexts, or that inlining should only take place at particular
high-frequency calls of some routine.

Our research investigates techniques for automatically deciding
when inlining is profitable. Making good inlining decisions depends
crucially on accurately assessing the costs and benefits of inlining.
Previous automatic decision makers used simple techniques for
estimating costs based on an examination of the target routine’s
source code (or unoptimized intermediate code), and consequently
they failed to take into account the effect of post-inlining
optimization of the target routine. Our work corrects this deficiency,
leading to more accurate cost and benefit estimates and therefore
better inlining decisions.

Our system assesses the costs and benefits of inlining by first
experimentally inlining the target routine, in the process measuring
the actual costs and benefits of that particular inline-expansion, and
then amortizing the cost of the experiment (called an inlining trial)
across future calls to that routine by storing the results of the trial in
a persistent database. Because the indirect costs and benefits of
inlining can depend greatly on the amount of the static information
available at the call site (e.g., the static value or class of an argument),
our system performs type group analysis to determine the amount of
available call-site-specific static information that was exploited
during optimization. Each database entry is guarded with type group
information, restricting reuse of the information derived from an
inlining trial to those call sites that would generate substantially the
same compiled code.

We implemented and measured this approach in the context of an
optimizing compiler for SELF [Ungar & Smith 87, Chambers &
Ungar 91], a pure object-oriented language similar to Smalltalk but
without any hard-wired operations or control structures. The SELF

273

41

Problem?

Minimizes
* call instruction
overhead

Greedy inliner

Minimizes
What we want * execution
time
. . Maximizes
Cost-Benefit Inliner .
Benefit

42

Steps

1. Call Graph Construction

2. Transfer static information
3. Calculate the benefit metric
4. Obtain inlining plan

43

Call Graph Construction

tart W thAReturnLen gth

ik

<thh

Static Information Transfer

public int startsWithAReturnsLength (String example) {
boolean starts = example.startsWith("A");
return starts.length() ;

*@WithARetumL@

“A”

Type: String

regionMatches

45

Static Information Transfer

public boolean startsWith(String prefix) ({
return startsWith (prefix, 0);

}

startsWithARetumL@

0
“A”

Type: String

regionMatches

46

Static Information Transfer

public boolean startsWith(String prefix, int start) {
return regionMatches (start, prefix, 0, prefix.count);

}

1
(:::E%%%TVﬁhARcﬂnnL%%%E::::)

0
“A”
0

Type: String

regionMatches

47

Post Inlining Benefit

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

start < 0

49

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

string.count - start < length

51

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

thisStart < 0

54

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

count - thisStart < length

55

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

count

56

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length <= 0

o7

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length - 1

Benefit in method = 0.5

*Still work in progress
959

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

length - 1
end

If end was different to 0, then we could unroll the loop.

60

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Post Inlining Benefit

if (start < 0 || string.count - start < length) return false;
if (count < length) return false;
length = 1
length - 1
end start =0
string = “A”
thisStart = 0

this = Type: String

If end was different to 0, then we could unroll the loop.

61

Benefit Analysis

Budget = 40
startsW1thARetumLength
11/1 z
20/5 reglonMatches

Cost/Benefit

62

Benefit Analysis

Budget = 40

.. @SWithARetumLengD
Remaining = 36

o Cmmn > G) an
20/5 @onMat@

63

Cost/Benefit

Benefit Analysis

Budget = 40

.. @SWithARetumLengD
Remaining = 34

Ve Cmwan Sl
20/5 @onMat@

64

Cost/Benefit

Benefit Analysis

Budget = 40

.. @sWithARetumngD
Remaining = 30

Voo G D Coandwn v
20/5 @onMat@

65

Cost/Benefit

Benefit Analysis

Budget = 40

.. @sWithARetumngD
Remaining = 23

v Qo S Q) an
VI Coanswine >
20/5 @onMat@

66

Cost/Benefit

Benefit Analysis

Budget = 40

.. @sWithARetumngD
Remaining = 19

20/5 @onMat@

67

Cost/Benefit

Benefit Analysis

Budget = 40

. @SWithARetumLenng
Remaining = 3

{ 20/5 @onMat@

68

Cost/Benefit

Comparison

Greedy inlining plan Cost benefit analysis inlining plan

startsW1thARetumLenD @sWithARetumLerD

startsW1th2
@onMat@

69

Some Challenges

e Virtual functions (do not consider all targets, prioritize
heavily called targets.)

70

Some Challenges

e Virtual functions (do not consider all targets, prioritize
heavily called targets.)

e Limiting big search space (profiling information + updating
IDT while doing analysis)

/1

Some Challenges

Virtual functions (do not consider all targets, prioritize
heavily called targets.)

Limiting big search space (profiling information + updating
IDT while doing analysis)

Determining adequate trade-off between compile-time
and analysis-time (approximate analysis)

(2

Some Challenges

Virtual functions (do not consider all targets, prioritize
heavily called targets.)

Limiting big search space (profiling information + updating
IDT while doing analysis)

Determining adequate trade-off between compile-time
and analysis-time (approximate analysis)

What other optimizations to consider? (escape analysis)

/3

Benefits vs Costs

23: aload.l
24: invekevirtual #9

public java.lang.String getName () ;
Code:

23: aload 1l
24: getfield

Minimizes
call instructions

4

Cost-Benefit Inliner MaXImlges
Benefit

Benefits vs Costs

23: aload.l
24: invokevirtual #9

public java.lang.String getName () ;
Code:

0: aload 0

1: getfield

4: areturn

23: aload 1l

24: getfield ‘
Minimizes

call instructions

regionMatches

75

Benefits vs Costs

3 load 1
24: inw okevirtual #9
pub. j g g getName ()
de:
0: aload 0

23: aload 1l

24: getfield ‘
Minimizes

call instructions

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

/0

Cost-Benefit Inliner *

regionMatches

Maximizes
Benefit

Benefits vs Costs

23: aload.l

public java.lang.String getName () ;

Code:

0: aload. 0
1: getfield
4: areturn

23: aload 1l
24: getfield

Minimizes .

call instructions

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

i’

Cost-Benefit Inliner MaXImlges
Benefit

regionMatches

Benefit Analysis

Budget = 40

startsWithAReturnLength

Remaining = 3

v e/ startsWith1 4/1
/ Y
Y

Benefits vs Costs

23: aload 1l

24: getfield ‘
Minimizes

call instructions

String getName () ;

Cost-Benefit Inliner MaX|m|;es
Benefit

regionMatches

Erick Ochoa

eochoa@ualberta.ca

length = 1
start =0
string = “A”
thisStart = 0

this = Type: String

Benefit Analysis

Budget = 40

startsWithAReturnLength

Remaining = 3

v e/ startsWith1 4/1
/ Y
Y

/8

mailto:eochoa@uaberta.ca

