
A patchable infrastructure for execution frequency profiling

Speaker: Andrew Craik

Devin Papineau, Nicholas Coughlin

8-Nov-2017 (16th Workshop on Compiler Driven Performance)

Low Overhead Profiling



Software Profiling

▪ Traditional solution to execution profiling

▪ Benefits: cross-platform, recycles existing compiler infrastructure

▪ Costs: runtime overhead, compiler complexity, code complexity

▪ OpenJ9 profiling story:

– Initial profiling from bytecode interpreter (IProfiling) – full fidelity, but 

is shutoff once method is compiled

– JIT profiled compilations

▪ Counters placed late – avoid complexity during optimization

▪ Limit optimizations to preserve basic block metadata from ilgen

▪ Duplicate method body – profiled & non-profiled w/ interleaving

2



Hardware Profiling

▪ Idea: “free” hardware counters to profile running application

▪ Practice: Execution profiling using instruction retirement sampling

▪ Complications:

– Complexity from fundamentally random nature – distilling precise 

data from noisy sampling is very difficult

– Hypervisors limit access to hardware counters for security reasons

– Sampling can inherently hide application behavior when sampling 

period and event period coincide closely

– Starvation / contention caused by event buffer processing thread

3



Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition:

4



Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition: Naïve – count all edges

5



Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition: Count block when edge splitting

not required

6



Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition: If we know the entry frequency

or the exit frequency from this

fragment we only need 2 counters

7



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X8



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

9



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

10



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S 100000

11



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

S→A 100 X→S

12



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

A→B 50

A→C 50

X→S

S→A

13



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

A→C 50

B→F 50

X→S

S→A

A→B

14



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

C→D 10000

B→F 50

X→S

S→A

A→B

A→C

15



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

D→E 10000

B→F 50

X→S

S→A

A→B

A→C

C→D

16



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

E→F 50

B→F 50

X→S

S→A

A→B

A→C

C→D

17



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

F→G 100

B→F 50

F→H 0

X→S

S→A

A→B

A→C

C→D

18



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

G→I 100

B→F 50

F→H 0

X→S

S→A

A→B

A→C

C→D

F→G

19



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

B→F 50

F→H 0

X→S

S→A

A→B

A→C

C→D

F→G

G→I

20



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

F→H 0 X→S

S→A

A→B

A→C

C→D

F→G

G→I

21



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

22



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

• One counter on hottest 

path of loop CD

• One counter on hottest 

path from loop to exit 

FGIX

23



Spanning Tree Placement – Benefits

▪ Acyclic region – hottest path has at most one counter

▪ More counter updates happen on colder paths – eg the more wrong 

our original execution expectation (we are learning more)

▪ Implementation favors counters at areas of maximum CFG fanout 

(lower frequency edges & blocks): reduces thread contention

▪ Can compute frequency of any single block as a sequence of counter 

additions and subtractions – each counter appears at most once

▪ Block frequencies can be stored using a pair of bit vectors – high 

information density

24



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

25



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

J

26



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

J

S

A

B B

C

D

E

F

G

H H

I I

J J

X

27



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

J

S

A

B B

C

D

E

F

G

H H

I I

J J

X I

28



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

J

S I

A I

B B

C I-B+J

D

E

F

G

H H

I I

J J

X I

29



Maximum Spanning Tree Formulation
S

I

A

C

D

B

E

F

G H

X

10000

50

100

50

100

0100

100

100

100

10000

X→S

S→A

A→B

A→C

C→D

F→G

G→I

F→H

J

S I

A I

B B

C I-B+J

D I-B+J

E I-B

F I

G I-H

H H

I I

J J

X I

30



Exception Edges

▪ OMR basic blocks – permit exception edge departures mid-block

▪ Exception edge represents non-local changes in flow-of-control

▪ Splitting an exception edge very hard

▪ Observation: exceptions are rare and usually do not occur

▪ Simplifying assumption: unify all counters for exception edges to a 

given catch block – just count the catch block

▪ Can detect when there is imprecision and can recompile and reprofile

31



Exception Edges

X

Y

Z

C

32



Exception Edges

X

Y

Z

C

X

Y

Z

C

R

S

T

X X

Y X – R

Z X – R – S

C R + S + T
33



Exception Edges

X

Y

Z

C

X

Y

Z

C

X X

Y X – C

Z X – C

C C

X

Y

Z

C

R

S

T

X X

Y X – R

Z X – R – S

C R + S + T
34



Counter Implementation

▪ Non-atomic updates – experiments forcing maximum contention 

showed deltas of at most 20% (did not change optimizer decisions)

▪ Instruction sequence:

– X86: direct memory add of a constant

– POWER: materialize address, load, add, store

– Z Systems: materialize address to register, add to memory

▪ Patch in/out memory update – most expensive part

– Store update instruction in metadata to write back in when needed

– Align instructions for runtime patching (platform specific needs)

35



Counter Optimization

▪ Counters placed early in compilation – reflects ilgen state

▪ Optimization may co-locate counters – can de-duplicate if two 

counters always occur together

▪ Can optimize back-edge counting in counted loops:

▪ Active area of investigation to further reduce profiling overhead

A

C

D E

J

A

C

D E

J
Add 1 to J n times Add n to J once

36



Counter Consumption & Inlining

▪ Inlining can change between compilations

▪ If we inline a method body not profiled how do we set meaningful 

block frequencies?

▪ Idea: check for other compiled bodies with the same call chain 

otherwise use IProfiler data

▪ Example:
given call sequence operation → implementation → details

if we did not previously inline implementation into operation look for:
implementation → details

details

37



Performance Results

▪ DayTrader 3 – flat profile of many methods (~10000 warm compiles)

– Counters enabled for all blocks in all methods: -10% throughput

– Counters disabled for all blocks in all methods: <-0.5% throughput

– Footprint increase from counter placement: <15%

▪ Penalties currently higher for high opt compiles with loops – counter 

increments can disrupt optimizations using pattern matching

▪ Above results do NOT include counter optimization – many examples 

of multiple counters incrementing in a row, no counted loop counter 

optimizations etc

38



Status

▪ Implementation available in a disabled-by-default state in 

Eclipse OpenJ9

▪ Working to add lightweight value profiling

▪ Goal: replace current profiling infrastructure & boost startup

▪ Hope to contribute to Eclipse OMR once complete for other runtimes

39



Q&A


