Low Overhead Profiling

A patchable infrastructure for execution frequency profiling

Speaker: Andrew Craik
Devin Papineau, Nicholas Coughlin
8-Nov-2017 (16" Workshop on Compiler Driven Performance)

Software Profiling

= Traditional solution to execution profiling
= Benefits: cross-platform, recycles existing compiler infrastructure
= Costs: runtime overhead, compiler complexity, code complexity

= Opend9 profiling story:
— Initial profiling from bytecode interpreter (IProfiling) — full fidelity, but
Is shutoff once method is compliled
— JIT profiled compilations
= Counters placed late — avoid complexity during optimization
= Limit optimizations to preserve basic block metadata from ilgen
= Duplicate method body — profiled & non-profiled w/ interleaving

Hardware Profiling

= |dea: “free” hardware counters to profile running application

= Practice: Execution profiling using instruction retirement sampling

= Complications:
— Complexity from fundamentally random nature — distilling precise

data from noisy sampling is very difficult
— Hypervisors limit access to hardware counters for security reasons

— Sampling can inherently hide application behavior when sampling
period and event period coincide closely

— Starvation / contention caused by event buffer processing thread

Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= |ntuition:

Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= Intuition: Naive — count all edges

Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= Intuition: Count block when edge splitting

not required

Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= Intuition: If we know the entry frequency
or the exit frequency from this

fragment we only need 2 counters

Maximum Spanning Tree Formulation

Maximum Spanning Tree Formulation

Maximum Spanning Tree Formulation

Maximum Spanning Tree Formulation

X—S 100000

Maximum Spanning Tree Formulation

S—A

100

X—S

Maximum Spanning Tree Formulation

A—B 50 X—3S

A—C 50 S—A

Maximum Spanning Tree Formulation

A—C 50 X—3S

B—F 50 S—A

A—B

Maximum Spanning Tree Formulation

C—D 10000 X—3
B—F 50 S—A
A—B
A—C

Maximum Spanning Tree Formulation

D—E 10000 X—3
B—F 50 S—A
A—B
A—C
C—D

Maximum Spanning Tree Formulation

E—F 50 X—S

B—F 50 S—A

A—B

A—C

C—-D

Maximum Spanning Tree Formulation

F-G 100 X—3
B—F 50 S—A
F—H 0 A—B
A—C
C—D

Maximum Spanning Tree Formulation

G—l 100 X—S
B—-F 50 S—A
F—H 0 A—B
A—C
C—D
F-G

Maximum Spanning Tree Formulation

B—F 50 X—S

F—H 0 S—A

A—B

A—C

C—-D

F-G

G—l

Maximum Spanning Tree Formulation

X—S

S—A

A—B

A—C

C—-D

F-G

G—l

Maximum Spanning Tree Formulation

X—S

S—A

A—B

A—C

C—-D

F-G

G—l

F—H

Maximum Spanning Tree Formulation

23

S—A

 One counter on hottest
path of loop CD

* One counter on hottest
path from loop to exit
FGIX

Spanning Tree Placement — Benefits

= Acyclic region — hottest path has at most one counter

= More counter updates happen on colder paths — eg the more wrong
our original execution expectation (we are learning more)

= Implementation favors counters at areas of maximum CFG fanout
(lower frequency edges & blocks): reduces thread contention

= Can compute frequency of any single block as a sequence of counter
additions and subtractions — each counter appears at most once

= Block frequencies can be stored using a pair of bit vectors — high
iInformation density

24

Maximum Spanning Tree Formulation

X—3
S—A
A—B
A—C
C—-D
F—-G
G—l

F—H

Maximum Spanning Tree Formulation

X—3
S—A
A—B
A—C
C—-D
F—-G
G—l

F—H

Maximum Spanning Tree Formulation

X—S S

S—A A

A—B B B

A—C C

C—-D D

F—-G E

G-l F

F—H G
H H
| |
J J
X

Maximum Spanning Tree Formulation

X—S S

S—A A

A—B B B

A—C C

C—-D D

F—-G E

G-l F

F—H G
H H
| |
J J
X |

Maximum Spanning Tree Formulation

X—3 S |
S—A A |
A—B B B
A—C C |-B+J
C—-D D
F—-G E
G-l F
F—H G
H H
| |
J J
X |

Maximum Spanning Tree Formulation

30

S—A

[-B+J

[-B+J

I-B

I-H

H

X|“| T |IZT/QMMmT|O(T@| > W

—u—

Exception Edges

= OMR basic blocks — permit exception edge departures mid-block
= Exception edge represents non-local changes in flow-of-control

= Splitting an exception edge very hard

= Observation: exceptions are rare and usually do not occur

= Simplifying assumption: unify all counters for exception edges to a
given catch block — just count the catch block

= Can detect when there is imprecision and can recompile and reprofile

Exception Edges

Exception Edges

33

X-R-S

O|IN|<|X

R+S+T

Exception Edges

X

X-C

X-C

Z|X-R-S
CIR+S+T

34

Counter Implementation

= Non-atomic updates — experiments forcing maximum contention
showed deltas of at most 20% (did not change optimizer decisions)

= Instruction sequence:
— X86: direct memory add of a constant
— POWER: materialize address, load, add, store
— Z Systems: materialize address to register, add to memory

= Patch in/out memory update — most expensive part
— Store update instruction in metadata to write back in when needed
— Align instructions for runtime patching (platform specific needs)

35

Counter Optimization

= Counters placed early in compilation — reflects ilgen state

= Optimization may co-locate counters — can de-duplicate if two
counters always occur together

= Can optimize back-edge counting in counted loops:

Add 1 to J n times Add n to J once

= Active area of investigation to further reduce profiling overhead

Counter Consumption & Inlining

= |Inlining can change between compilations

= |[f we Inline a method body not profiled how do we set meaningful
nlock frequencies?

= |dea: check for other compiled bodies with the same call chain
otherwise use IProfiler data

= Example:
given call sequence operation — implementation — details

If we did not previously inline implementation into operation look for:
implementation — details
details

37

Performance Results

= DayTrader 3 — flat profile of many methods (~10000 warm compiles)
— Counters enabled for all blocks in all methods: -10% throughput
— Counters disabled for all blocks in all methods: <-0.5% throughput
— Footprint increase from counter placement: <15%

= Penalties currently higher for high opt compiles with loops — counter
Increments can disrupt optimizations using pattern matching

= Above results do NOT include counter optimization — many examples
of multiple counters incrementing in a row, no counted loop counter

optimizations etc

38

Status

= Implementation available in a disabled-by-default state In
Eclipse OpenJ9

= Working to add lightweight value profiling
= Goal: replace current profiling infrastructure & boost startup

= Hope to contribute to Eclipse OMR once complete for other runtimes

19) (&

39

