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Software Profiling

▪ Traditional solution to execution profiling

▪ Benefits: cross-platform, recycles existing compiler infrastructure

▪ Costs: runtime overhead, compiler complexity, code complexity

▪ OpenJ9 profiling story:

– Initial profiling from bytecode interpreter (IProfiling) – full fidelity, but 

is shutoff once method is compiled

– JIT profiled compilations

▪ Counters placed late – avoid complexity during optimization

▪ Limit optimizations to preserve basic block metadata from ilgen

▪ Duplicate method body – profiled & non-profiled w/ interleaving
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Hardware Profiling

▪ Idea: “free” hardware counters to profile running application

▪ Practice: Execution profiling using instruction retirement sampling

▪ Complications:

– Complexity from fundamentally random nature – distilling precise 

data from noisy sampling is very difficult

– Hypervisors limit access to hardware counters for security reasons

– Sampling can inherently hide application behavior when sampling 

period and event period coincide closely

– Starvation / contention caused by event buffer processing thread
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Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition:
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Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition: Naïve – count all edges
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Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition: Count block when edge splitting

not required
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Counter Placement

▪ Counter placement core algorithm due to:

– Knuth & Stevenson, “Optimal measurement points for program 

frequency counts”, BIT13, 1973

– Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS, 

1994

▪ Formulation based on CFG edge execution frequency profiling

▪ Intuition: If we know the entry frequency

or the exit frequency from this

fragment we only need 2 counters
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• One counter on hottest 

path of loop CD
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path from loop to exit 

FGIX
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Spanning Tree Placement – Benefits

▪ Acyclic region – hottest path has at most one counter

▪ More counter updates happen on colder paths – eg the more wrong 

our original execution expectation (we are learning more)

▪ Implementation favors counters at areas of maximum CFG fanout 

(lower frequency edges & blocks): reduces thread contention

▪ Can compute frequency of any single block as a sequence of counter 

additions and subtractions – each counter appears at most once

▪ Block frequencies can be stored using a pair of bit vectors – high 

information density
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Exception Edges

▪ OMR basic blocks – permit exception edge departures mid-block

▪ Exception edge represents non-local changes in flow-of-control

▪ Splitting an exception edge very hard

▪ Observation: exceptions are rare and usually do not occur

▪ Simplifying assumption: unify all counters for exception edges to a 

given catch block – just count the catch block

▪ Can detect when there is imprecision and can recompile and reprofile
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Counter Implementation

▪ Non-atomic updates – experiments forcing maximum contention 

showed deltas of at most 20% (did not change optimizer decisions)

▪ Instruction sequence:

– X86: direct memory add of a constant

– POWER: materialize address, load, add, store

– Z Systems: materialize address to register, add to memory

▪ Patch in/out memory update – most expensive part

– Store update instruction in metadata to write back in when needed

– Align instructions for runtime patching (platform specific needs)
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Counter Optimization

▪ Counters placed early in compilation – reflects ilgen state

▪ Optimization may co-locate counters – can de-duplicate if two 

counters always occur together

▪ Can optimize back-edge counting in counted loops:

▪ Active area of investigation to further reduce profiling overhead
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Counter Consumption & Inlining

▪ Inlining can change between compilations

▪ If we inline a method body not profiled how do we set meaningful 

block frequencies?

▪ Idea: check for other compiled bodies with the same call chain 

otherwise use IProfiler data

▪ Example:
given call sequence operation → implementation → details

if we did not previously inline implementation into operation look for:
implementation → details

details
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Performance Results

▪ DayTrader 3 – flat profile of many methods (~10000 warm compiles)

– Counters enabled for all blocks in all methods: -10% throughput

– Counters disabled for all blocks in all methods: <-0.5% throughput

– Footprint increase from counter placement: <15%

▪ Penalties currently higher for high opt compiles with loops – counter 

increments can disrupt optimizations using pattern matching

▪ Above results do NOT include counter optimization – many examples 

of multiple counters incrementing in a row, no counted loop counter 

optimizations etc
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Status

▪ Implementation available in a disabled-by-default state in 

Eclipse OpenJ9

▪ Working to add lightweight value profiling

▪ Goal: replace current profiling infrastructure & boost startup

▪ Hope to contribute to Eclipse OMR once complete for other runtimes
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