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Software Profiling

= Traditional solution to execution profiling
= Benefits: cross-platform, recycles existing compiler infrastructure
= Costs: runtime overhead, compiler complexity, code complexity

= Opend9 profiling story:
— Initial profiling from bytecode interpreter (IProfiling) — full fidelity, but
Is shutoff once method is compliled
— JIT profiled compilations
= Counters placed late — avoid complexity during optimization
= Limit optimizations to preserve basic block metadata from ilgen
= Duplicate method body — profiled & non-profiled w/ interleaving



Hardware Profiling

= |dea: “free” hardware counters to profile running application

= Practice: Execution profiling using instruction retirement sampling

= Complications:
— Complexity from fundamentally random nature — distilling precise

data from noisy sampling is very difficult
— Hypervisors limit access to hardware counters for security reasons

— Sampling can inherently hide application behavior when sampling
period and event period coincide closely

— Starvation / contention caused by event buffer processing thread




Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= |ntuition:
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= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
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= Intuition: Naive — count all edges



Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= Intuition: Count block when edge splitting

not required




Counter Placement

= Counter placement core algorithm due to:
— Knuth & Stevenson, “Optimal measurement points for program
frequency counts”, BIT13, 1973
— Ball & Larus, “Optimally Profiling and Tracing Programs”, TOPLAS,
1994

= Formulation based on CFG edge execution frequency profiling

= Intuition: If we know the entry frequency
or the exit frequency from this

fragment we only need 2 counters
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Maximum Spanning Tree Formulation
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Spanning Tree Placement — Benefits

= Acyclic region — hottest path has at most one counter

= More counter updates happen on colder paths — eg the more wrong
our original execution expectation (we are learning more)

= Implementation favors counters at areas of maximum CFG fanout
(lower frequency edges & blocks): reduces thread contention

= Can compute frequency of any single block as a sequence of counter
additions and subtractions — each counter appears at most once

= Block frequencies can be stored using a pair of bit vectors — high
iInformation density
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Exception Edges

= OMR basic blocks — permit exception edge departures mid-block
= Exception edge represents non-local changes in flow-of-control

= Splitting an exception edge very hard

= Observation: exceptions are rare and usually do not occur

= Simplifying assumption: unify all counters for exception edges to a
given catch block — just count the catch block

= Can detect when there is imprecision and can recompile and reprofile
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Counter Implementation

= Non-atomic updates — experiments forcing maximum contention
showed deltas of at most 20% (did not change optimizer decisions)

= Instruction sequence:
— X86: direct memory add of a constant
— POWER: materialize address, load, add, store
— Z Systems: materialize address to register, add to memory

= Patch in/out memory update — most expensive part
— Store update instruction in metadata to write back in when needed
— Align instructions for runtime patching (platform specific needs)
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Counter Optimization

= Counters placed early in compilation — reflects ilgen state

= Optimization may co-locate counters — can de-duplicate if two
counters always occur together

= Can optimize back-edge counting in counted loops:

Add 1 to J n times Add n to J once

= Active area of investigation to further reduce profiling overhead




Counter Consumption & Inlining

= |Inlining can change between compilations

= |[f we Inline a method body not profiled how do we set meaningful
nlock frequencies?

= |dea: check for other compiled bodies with the same call chain
otherwise use IProfiler data

= Example:
given call sequence operation — implementation — details

If we did not previously inline implementation into operation look for:
implementation — details
details
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Performance Results

= DayTrader 3 — flat profile of many methods (~10000 warm compiles)
— Counters enabled for all blocks in all methods: -10% throughput
— Counters disabled for all blocks in all methods: <-0.5% throughput
— Footprint increase from counter placement: <15%

= Penalties currently higher for high opt compiles with loops — counter
Increments can disrupt optimizations using pattern matching

= Above results do NOT include counter optimization — many examples
of multiple counters incrementing in a row, no counted loop counter

optimizations etc
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Status

= Implementation available in a disabled-by-default state In
Eclipse OpenJ9

= Working to add lightweight value profiling
= Goal: replace current profiling infrastructure & boost startup

= Hope to contribute to Eclipse OMR once complete for other runtimes
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